Beginning with C++ ® 27

Object Extraction operator Variable

cin O 455
Prvey Q

—
Keyboard

Hg 34 s b

Cascading of I/0 Operators

We have used the insertion operator << repeatedly in the last two statements for printing
results.

The statement
cout << "Sum = " << sum << "\n";

first sends the string “Sum =" to cout and then sends the value of sum. Finally, it sends the
newline character so that the next output will be in the new line. The multiple use of << in
one statement is called cascading. When cascading an output operator, we should ensure
necessary blank spaces between different items. Using the cascading technique, the last
two statements can be combined as follows:

cout << "Sum = " << sum << "\n"
<< "Average = " << average << "\n";

This is one statement but provides two lines of output. If you want only one line of output,
the statement will be:

cout << "Sum = " << sum << ","
<< "Average = " << average << "\n";
The output will be:

Sum = 14, Average = 7
We can also cascade input operator >> as shown below:
c¢in >> numberl >> numberZ;

The values are assigned from left to right. That is, if we key in two values, say, 10 and 20,
then 10 will be assigned to numberl and 20 to number2.

28 & Object-Oriented Programming with C++

|2.5 An Example with Class

One of the major features of C++ is classes. They provide a method of binding together data
and functions which operate on them. Like structures in C, classes are user-defined data
types.

Prog‘rém 2.3 shows the use of class in a C++ program.

#inciude <¥65treah>»suk s
using namespace std;
class person
{ NP
char name{30];
int age;
public:
void getdata{void);
void display(void);
b

void, p‘érs,oy,r,i i ﬂetdg%E(VQi,&),. o

{ , . ,
cout << “Enter name: “;
cin >> name;
cout << "Enter age: ";
cin >> age;

}

void person :: display(void)

{ R o
cout << "\nName: " << name;
cout << "\pAge: " << age;

}

int main()

{
person p;
p-getdata();
p.display();
return O; '

}

PROGRAM 2.3

Beginning with C++ @ 29
The output of Program 2.3 is:

Enter Name: Ravinder
EnterAge: 30

Name: Ravinder
Age: 30

rnole

The program defines person as a new data of
type class. The class person includes two basic
data type items and two functions to operate on
that data. These functions are called member
functions. The main program uses person to
declare variables of its type. As pointed out
earlier, class variables are known as objects. Here, p is an object of type person. Class
objects are used to invoke the functions defined in that class. More about classes and objects
is discussed in Chapter 5.

cin can read only one word and
therefore we cannot use names with
blank spaces.

|2.6 Structure of C++ Program

As it can be seen from the Program 2.3, a typical C++ program would contain four sections
as shown in Fig. 2.3. These sections may be placed in separate code files and then
compiled independently or jointly.

Include files

Class declaration

Member functions definitions

Main function program

Fig. 2.3 & Structure of u C ++ progr

It is a common practice to organize a program into three separate files. The class
declarations are placed in a header file and the definitions of member functions go into
another file. This approach enables the programmer to separate the abstract specification

30 & Object-Oriented Programming with C++

of the interface (class definition) from the
implementation details (member functions
definition). Finally, the main program that uses
the class is placed in a third file which "includes"
the previous two files as well as any other files Server
required.

This approach is based on the concept of ~ Clas
client-server model as shown in Fig. 2.4. The
class definition including the member functions
constitute the server that provides services to
the main program known as client. The client Main function program Client
uses the server through the public interface of
the class.

model

|2.7 Creating the Source File

Like C programs, C++ programs can be created using any text editor. For example, on the
UNIX, we can use vi or ed text editor for creating and editing the source code. On the DOS
system, we can use edlin or any other editor available or a word processor system under
non-document mode.

Some systems such as Turbo C++ provide an integrated environment for developing and
editing programs. Appropriate manuals should be consulted for complete details.

The file name should have a proper file extension to indicate that it is a C++ program
file. C++ implementations use extensions such as .c, .C, .cc, .cpp and .cxx. Turbo C++ and
Borland C++ use .c for C programs and .cpp (C plus plus) for C++ programs. Zortech C++
system uses .cxx while UNIX AT&T version uses .C (capital C) and .cc. The operating system
manuals should be consulted to determine the proper file name extensions to be used.

I2.8 Compiling and Linking

The process of compiling and linking again depends upon the operating system. A few popular
systems are discussed in this section.

Unix AT&T C++

The process of implementation of a C++ program under UNIX is similar to that of a C
program.We should use the "CC" (uppercase) command to compile the program. Remember,
we use lowercase "cc" for compiling C programs. The command

CC example.C
at the UNIX prompt would compile the C++ program source code contained in the file example.C.

The compiler would produce an object file example.o and then automatically link with the
library functions to produce an executable file. The default executable filename is a.out.

Beginning with C++ -0 31

A program spread over multiple files can be compiled as follows:
CC filel.C file2.o

The statement compiles only the file filel.C and links it with the previously compiled
file2.0 file.This is useful when only one of the files needs to be modified. The files that are
not modified need not be compiled again.

Turbo C+ + and Borland C++

Turbo C++ and Borland C++ provide an integrated program development environment under
MS DOS. They provide a built-in editor and a menu bar which includes options such as File,
Edit, Compile and Run.

We can create and save the source files under the File option, and edit them under the
Edit option. We can then compile the program under the Compile option and execute it
under the Run option. The Run option can be used without compiling the source code. In
this case, the RUN command causes the system to compile, link and run the program in one
step. Turbo C++ being the most popular compiler, creation and execution of programs under
Turbo C++ system are discussed in detail in Appendix B.

Visual C++

It is a Microsoft application development system for C++ that runs under Windows. Visual
C++ is a visual programming environment in which basic program components can be selected
through menu choices, buttons, icons, and other predetermined methods. Development and
execution of C++ programs under Windows are briefly explained in Appendix C.

SUMMARY

C++ is a superset of C language.

g8

C++ adds a number of object-oriented features such as objects, inheritance, function
overloading and operator overloading to C. These features enable building of programs
with clarity, extensibility and ease of maintenance.

<> C++ can be used to build a variety of systems such as editors, compilers, databases,
communication systems, and many more complex real-life application systems.

&> C++ supports interactive input and output features and introduces a new comment
symbol / that can be used for single line comments. It also supports C-style comments.

¢ Like C programs, execution of all C++ programs begins at main() function and ends at

return() statement. The header file iostream should be included at the beginning of
all programs that use input/output operations.

32 ¢

Object-Oriented Programming with C++

&> All ANSI C++ programs must include using namespace std directive.

<> A typical C++ program would contain four basic sections, namely, include files section,
class declaration section, member function section and main function section.

g 8

Like C programs, C++ programs can be created using any text editor.

Most compiler systems provide an integrated environment for developing and executing

programs. Popular systems are UNIX AT&T C++, Turbo C++ and Microsoft Visual

C++.

#include

a.out

Borland C++
cascading

cin

class

client

comments

cout

edlin

extraction operator
float

free-form

get from operator
input operator
insertion operator
int

iostream
iostream.h
keyboard

YYYVYVYVYYVYVYYYYVYYVYYYYYY

I Review Questions

Key Terms

VYVYVYYVYVYVYVYVYYYVYVYYVYVYYVYVYY

main()

member functions -
MS-DOS
namespace

object

operating systems
operator overloading
output operator

put to operator
return (

screen

server

Simula67

text editor

Turbo C++

Unix AT&T C++
using

Visual C++
Windows

Zortech C++

2.1 State whether the following statements are TRUE or FALSE.
(a) Since C is a subset of C++, all C programs will run under C++ compilers.

Beginning with C++ —o 33

(b) In C++, a function contained within a class is called a member function.

(¢c) Looking at one or two lines of code, we can easily recognize whether a program
is written in C or C++.

(d) In C++, it is very easy to add new features to the existing structure of an
object.

(e) The concept of using one operator for different purposes is known as oerator
overloading.

() The output function printfl) cannot be used in C++ programs.
2.2 Why do we need the preprocessor directive #include <iostream> ¢
2.3 How does a main() function in C++ differ from main() in C?

2.4 What do you think is the main advantage of the comment // in C++ as compared
to the old C type comment?

9.5 Describe the major parts of a C++ program.

[Debugging Exercises

2.1 Identify the error in the following program.
#include <iostream.h>

void main()

{
int i = 03
i=1d+1;
cout << i << " "3
/*comment*//i = 1 + 1;
cout << i;

2.2 Identify the error in the following program.
#include <iostream.h>
void main()
{
short 1=2500, j=3000;
cout >> "i + j =" >> -(i+j);
}
2.3 What will happen when you run the following program?

#include <iostream.h>
void main()

{

34 e

24

Object-Oriented Programming with C++

int i=10, j=5;
int modResult=0;
int divResult=0;

modResult = i%j;
cout << modResult << " ",

divResult = i/modResult;
cout << divResult;
}
Find errors, if any, in the following C++ statements.
(a) cout <<"x="x;
(b) m=5:/n=10;//s=m+n;
() cin>>x; >>y;
(d) cout << \n "Name:" << name;
(e) cout <<"Enter value:"; cin >> x;
(H /*Addition*/ z=x +y;

I Programming Exercises

2.1

<.

Write a program to display the following output using a single cout statement.

Maths = 90
Physics = 77
Chemistry = 69

Write a program to read two numbers from the keyboard and display the larger
value on the screen.

Write a program to input an integer value from keyboard and display on screen
"WELL DONE" that many times.

Write a program to read the values bf a, b and ¢ and display the value of x, where
x=a/b-c

Test your program for the following values:

(a) a=250.b=85¢=25

(b)y a=300,b=70,¢=70

Write a C++ program that will ask for a temperature in Fahrenheit and display it
in Celsius.

Redo Exercise 2.5 using a class called temp and member functions.

Tokens

Keywords
Identifiers

Data types
User-defined types
Derived types
Symbolic constants
Declaration of variables
Initialization
Reference variables
Type compatibility

VYVYVYYVYYYYYY

3.1 Introduction

As mentioned earlier, C++ is a superset of C and therefore most constructs of C are legal in
C++ with their meaning unchanged. However, there are some exceptions and additions. In

3

Fynressios
sfruct

Key Concepts

YVVYVYVYVYYVYYYVYY

Scope resolution

Dereferencing

Memory management
Formatting the output

Type casting

Constructing expressions
Special assignment expressions
Implicit conversion

Operator overloading

Control structures

36 & Object-Oriented Programming with C++

this chapter, we shall discuss these exceptions and additions with respect to tokens and
control structures.

13.2 Tokens

As we know, the smallest individual units in a program are known as tokens. C++ has the
following tokens:

Keywords
Identifiers
Constants
Strings

Operators

LA R B B

A C++ program is written using these tokens, white spaces, and the syntax of the language.
Most of the C++ tokens are basically similar to the C tokens with the exception of some
additions and minor modifications.

|3.3 Keywords

The keywords implement specific C++ language features. They are explicitly reserved identifiers
and cannot be used as names for the program variables or other user-defined program
elements.

Table 3.1 gives the complete set of C++ keywords. Many of them are common to both C and
C++. The ANSI C keywords are shown in boldface. Additional keywords have been added to
the ANSI C keywords in order to enhance its features and make it an object-oriented language.
ANSI C++ standards committee has added some more keywords to make the language more
versatile. These are shown separately. Meaning and purpose of all C++ keywords are given
in Appendix D.

|3.4 Identifiers and Constants

Identifiers refer to the names of variables, functions, arrays, classes, etc. created by the
programmer. They are the fundamental requirement of any language. Each language has its
own rules for naming these identifiers. The following rules are common to both C and C++:

Only alphabetic characters, digits and underscores are permitted.
The name cannot start with a digit.

Uppercase and lowercase letters are distinct.

A declared keyword cannot be used as a variable name.

L R

Tokens, Expressions and Control Structures -0 37

Table 3.1 C++ keywords

asm double new switch
auto else operator template
break enum private this

case extern protected throw
catch float public try

char for register typedef
class friend return union
const goto short unsigned
continue if signed virtual
default inline sizeof void
delete int static volatile
do long struct while
Added by ANSI C++

bool export reinterpret_cast typename
const_cast false static_cast using
dynamic_cast mutable true wchar_t
explicit namespace typeid

Note: The ANSI C keywords are shown in bold face.

A major difference between C and C++ is the limit on the length of a name. While ANSI
C recognizes only the first 32 characters in a name, ANSI C++ places no limit on its length
and, therefore, all the characters in a name are significant.

Care should be exercised while naming a variable which is being shared by more than one
file containing C and C++ programs. Some operating systems impose a restriction on the
length of such a variable name.

Constants refer to fixed values that do not change during the execution of a program.

Like C, C++ supports several kinds of literal constants. They include integers, characters,
floating point numbers and strings. Literal constant do not have memory locations. Examples:

123 // decimal integer

12.34 // floating point integer
037 // octal integer

0X2 // hexadecimal integer
"CHt" // string constant

‘A // character constant
L'ab' // wide-character constant

The wehar_t type is a wide-character literal introduced by AN SI C++ and is intended for
character sets that cannot fit a character into a single byte. Wide-character literals begin
with the letter L.

38 &—

Object-Oriented Programming with C++.

C++ also recognizes all the backslash character constants available in C.

reote

C++ supports two types of string representation — the C-style character string and the
string class type introduced with Standard C++. Although the use of the string class type is
recommended, it is advisable to understand and use C-style strings in some situations. The
string class type strings support many features and are discussed in detail in

)
Chapter 15. J

13.5 Basic Data Types

Data types in C++ can be classified under various categories as shown in Fie. 3.1.
8

C++ Data Types |

\\
\\‘
1 [\\
User-defined type Built-in type ‘ Derived type !
i i
structure . ! array |
. \ | .
union \ " function !
class « | pointer !
enumeration S 1 reference i
N
)i . N
Integral type Void Floating type
/\ /N
/ \\
/
|| u — ,,4\
' int | i char | . float | | double
{ i J []

Fig.3.1 « Hierarchy of C++ data types

B T A, s

Both C and C++ compilers support all the built-in (also known as basic or fundamental)
data types. With the exception of void, the basic data types may have several modifiers
preceding them to serve the needs of various situations. The modifiers signed, unsigned,
long, and short may be applied to character and integer basic data types. However, the
modifier long may also be applied to double. Data type representation is machine specific in
C++. Table 3.2 lists all combinations of the basic data types and modifiers along with their
size and range for a 16-bit word machine.

Tokens, Expressions and Control Structures —e 39

Table 3.2 Size and range of C++ basic data types

Type Bytes Range
char 1 —128 to 127
unsigned char 1 0 to 255
signed char 1 — 128 to 127
int 2 — 32768 to 32767
unsigned int 2 0 to 65535
signed int 2 — 31768 to 32767
short int p — 31768 to 32767

unsigned short int 2 0 to 65535
signed short int 2 -32768 to 32767
long int 4 —2147483648 to 2147483647
signed long int 4 "-2147483648 to 2147483647
unsigned long int 4 0 to 4294967295
float 4 3.4E-38 to 3.4E+38
double 8 1.7E-308 to 1.7E+308
0

[y

long double 3.4E-4932 to 1.1E+4932

N E S i SR T

ed

ANSI C++ committee has added two more data types, bool and wehar_t. They are discussed
in Chapter 16.

The type void was introduced in ANSI C. Two normal uses of void are (1) to specify the

return type of a function when it is not returning any value, and (2) to indicate an empty
argument list to a function. Example:

void functi(void);

Another interesting use of void is in the declaration of generic pointers. Example:
void *gp; // gp becomes generic pointer

A generic pointer can be assigned a pointer value of any basic data type, but it may not be
dereferenced. For example,

int *ip; // int pointer
gp = ip; // assign int pointer to void pointer

are valid statements. But, the statement,
“ip = *op;
is illegal. It would not make sense to dereference a pointer to a void value.
Assigning any pointer type to a void pointer without using a cast is allowed in both C++

and ANSI C. In ANSI C, we can also assign a void pointer to a non-void pointer without
using a cast to non-void pointer type. This is not allowed in C++. For example,

40 & Object-Oriented Programming with C++
void *ptrl;
char *ptr2;
ptr2 = ptrl;

are all valid statements in ANSI C but not in C++. A void pointer cannot be directly assigned
to other type pointers in C++. We need to use a cast operator as shown below:

ptr2 = (char *)ptrl;

|3.6 User-Defined Data Types

Structures and Classes

We have used user-defined data types such as struct and union in C. While these data types
are legal in C++, some more features have been added to make them suitable for object-
oriented programming. C++ also permits us to define another user-defined data type known
as class which can be used, just like any other basic data type, to declare variables. The
class variables are known as objects, which are the central focus of object-oriented
programming. More about these data types is discussed later in Chapter 5.

Enumerated Data Type

An enumerated data type is another user-defined type which provides a way for attaching
names to numbers, thereby increasing comprehensibility of the code. The enum keyword
(from C) automatically enumerates a list of words by assigning them values 0,1,2, and so on.
This facility provides an alternative means for creating symbolic constants. The syntax of an
enum statement is similar to that of the struct statement. Examples:

enum shape{circle, square, triangle};
enum colour{red, blue, green, yellow};
enum position{off, on};

The enumerated data types differ slightly in C++ when compared with those in ANSI C. In
C++, the tag names shape, colour, and position become new type names. By using these
tag names, we can declare new variables. Examples:

shape ellipse; // ellipse is of type shape
colour background; // background is of type colour

ANSI C defines the types of enums to be ints. In C++, each enumerated data type retains
its own separate type. This means that C++ does not permit an int value to be automatically
converted to an enum value. Examples:

colour background = blue; // allowed
colour background = 7; // Error in C++
colour background = (colour) 7; // 0K

I

Tokens, Expressions and Control Structures - 41

However, an enumerated value can be used in place of an int value.
int ¢ = red; // valid, colour type promoted to int

By default, the enumerators are assigned integer values starting with O for the first
enumerator, 1 for the second, and so on. We can over-ride the default by explicitly assigning
integer values to the enumerators. For example,

enum colour{red, blue=4, green=8};
enum colour{red=5, blue, green};

are valid definitions. In the first case, red is 0 by default. In the second case, blue is 6 and
green is 7. Note that the subsequent initialized enumerators are larger by one than their
predecessors.

C++ also permits the creation of anonymous enums (i.e., enums without tag names).
Example:

enum{off, on};

Here, off is 0 and on is 1. These constants may be referenced in the same manner as
regular constants. Examples:

int switch_1 = off;
int switch 2 = on;

In practice, enumeration is used to define symbolic constants for a switch statement.
Example:

enum shape

{
circle,
rectangle,
triangle

}s

int main()
{
cout << "Enter shape code:";
int code;
¢in >> code;
while(code >= circle &% code <= triangle)
{

switch(code)

44 ¢ Object-Oriented Programming with C++

constant expression, such as

const int size = 10;
char name(size];

This would be illegal in C. const allows us to create typed constants instead of having to
use #define to create constants that have no type information.

As with long and short, if we use the const modifier alone, it defaults to int. For example,
const size = 10;
means
const int size = 10;
The named constants are just like variables except that their values cannot be changed.

C++ requires a const to be initialized. ANSI C does not require an initializer; if none is
given, it initializes the const to 0.

The scoping of const values differs. A const in C++ defaults to the internal linkage and
therefore it is local to the file where it is declared. In ANSI C, const values are global in
nature. They are visible outside the file in which they are declared. However, they can be
made local by declaring them as static. To give a const value an external linkage so that it
can be referenced from another file, we must explicitly define it as an extern in C++. Example:

extern const total = 100;
Another method of naming integer constants is by enumeration as under;
enum {X,Y,Z};

This defines X, Y and Z as integer constants with values 0, 1, and 2 respectively. This is
equivalent to:

const X = 0;
const Y = 1;
const Z = 2;

We can also assign values to X, Y, and Z explicitly. Example:
enum{X=100, Y=50, Z=200};

Such values can be any integer values. Enumerated data type has been discussed in detail
in Section 3.6.

